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Abstract

This thesis aims to explore the feasibility of developing an IoT system to be

used in conjunction with a pin-loaded fitness machine, to provide immediate

feedback, and analysis based on the principles of velocity based training. The

system consists of a distance sensor mounted on the fitness machine and an

application for user interaction. The distance sensor, connected to a Rasp-

berry Pi, collects and computes movement data during an exercise. This data

is transmitted to a cloud infrastructure, consisting of various Amazon Web

Services, via the MQTT protocol, where it is further processed by applying

velocity based training principles using AWS Lambda functions and stored in

AWS DynamoDB. The application, developed using Next.js, provides an intu-

itive graphical user interface for users to monitor their workout performance,

including an embedded QR code scanner to access the machine. The data

displayed in the application offers insights into workout intensity and one-rep

max estimations, as well as phase and repetition tracking, allowing users to

optimize their training sessions. The project follows an Agile development

framework with an iterative approach to help progress towards a final solu-

tion, where emphasis on testing and feedback has been central to refining the

system’s functionality and user experience. The implementation of this IoT

solution demonstrates the potential of integrating IoT technology in fitness

equipment to provide training feedback with the goal of improving overall

workout efficiency. Future work could explore further automation of sensor

tracking, scalability for commercial use, and enhanced user interface features

to support larger user bases and deliver an even more integrated user expe-

rience. The final prototype developed in this project displays a step in the

right direction for a final solution that integrates IoT technology, and fitness

principles with fitness equipment to provide feedback and analysis for a user.
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1 Introduction

In the current technology-driven world, the pursuit of health has become increas-

ingly integrated into daily life, and the demand for sophisticated yet accessible tools

to monitor workout progress has become more prevalent. Fitness goers constantly

seek innovative and user-friendly solutions that not only enhance their training

efficiency but also provide feedback to optimize performance. In response to this

growing need, this thesis aims to explore the potential of an Internet of Things

(IoT) based product, designed specifically around the principles of velocity based

training (VBT). A method that uses the speed of a lift to optimize the training.

This approach allows users to receive immediate feedback on their performance,

enabling them to adjust their workout more effectively.

VBT is an exercise principle that uses technology to monitor the velocity of the

user’s movements during workouts. The basic idea behind VBT is to use the

speed of a workout movement to calculate the user’s intensity of an exercise based

on a velocity threshold. Trainers and athletes can therefore maximize training

effectiveness and efficiency by adjusting the load and speed according to the VBT

feedback. Based on this, this thesis aims to answer the following problem:

How can IoT technologies be used to develop a product that integrates a device

with an application for pin-loaded fitness machines, offering analysis of a user’s

workout based on the principles of velocity based training in a user-friendly way?

This project intends to create a solution to give consumers a simple way to monitor

and analyze their workouts using the principles of VBT. With the use of a quick

response (QR) scanner built into the application, users may scan a QR code placed

on a workout machine to allow the application to recognize the machine and send

apposite data. Once the application and machine are paired, a distance sensor

mounted on the machine starts gathering data. This data is then processed and

sent to keep in a database. In the end, the user receives the processed data on the

application showing their workout metrics and analysis.

Following the data collection phase, the data undergoes an elaborate journey to-

wards bettering user experience and usability. By using Next.js, a flexible frame-

work for building React applications, we construct the frontend interface as a

progressive web app (PWA). Next.js provides a foundation to create dynamic,

client-side experiences that ensure that users can interact with the tracking device.

Tailwind CSS is integrated into the frontend development process to make the user

interface (UI) more aesthetic and streamline the styling. We also use shadcn/ui to

speed up our development process, as it provides a comprehensive library of pre-

designed components that are easy to implement, enhancing both the functionality
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and design of our application. Transitioning to the backend infrastructure, we uti-

lize the computational power of Amazon Web Services (AWS) to facilitate data

processing and storage. AWS Lambda functions are created and deployed to han-

dle the incoming data streams from the device. Simultaneously, AWS DynamoDB

serves as the database solution, to securely store the processed workout data for

seamless retrieval using a non-relational database. Moreover, the distance sensor,

which is the main component in the data collection process, is set up with a Rasp-

berry Pi. The IoT device uses the MQTT protocol by publishing and subscribing

to topics, where the broker, being AWS IoT Core, acts as a conduit, facilitating the

communication between the device and the cloud backend infrastructure. Through

this setup, the product has the ability to perform real-time data collection and

processing.
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1.1 Storyboard

John Doe enters the fitness center to

workout.

John Doe finds a pin-loaded fitness

machine to workout on.

John Doe scans the QR code on the

machine with his app.

The app recognizes the specific ma-

chine and prompts John Doe to start

his workout.

John Doe starts the app and uses the

machine.

The application displays the elapsed

time for the current set

John Doe ends his workout by press-

ing the stop button on the app.

John Doe sees how well he per-

formed his workout, by looking at

his training history which shows use-

ful insights.

Figure 1: Overall caption for the storyboard

The storyboard displayed in figure 1 serves as a guideline of the features and func-

tionality that the solution should contain, from a user’s perspective.
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2 Background

In this section, the background of the project will be discussed. The prototype is

an IoT device that can collect and compute real-time data from an exercise, to then

showcase it to the user on an application. There exists a broad range of ways to

workout, and methods used to try and effectuate one’s training. Without proper

feedback, it is difficult to tell whether the work you put in has had any real effect

or benefit.

2.1 Velocity Based Training

Velocity based training is most commonly used to calculate the intensity of the

user’s workout. Normally, the user would have to subjectively guess the intensity

of their workout depending on how hard they perceived the set to be. In fitness

terms, this is commonly referred to as the rate of perceived exertion (RPE)[34].

With VBT, athletes and other fitness goers can now have a way of measuring

their intensity objectively to maximize their workout efficiency and improve their

performance[12]. Incorporating VBT offers numerous benefits that make it easier

to adjust weight and repetitions after each set during a workout session. This will

encourage you to push harder and work smarter towards your goal. Visualizing

the data makes it much easier to workout with intent. Being able to monitor and

manage the load and intensity more precisely, helps prevent overtraining and gives

you the advantage of reducing possible injuries[10].

2.2 Internet of Things

The Internet of Things, commonly referred to as IoT, is the connection of physical

objects like gadgets, vehicles, and appliances to the internet. This is done by using

various sensors, actuators, and software. IoT can range from small devices for

personal use, at home or work, to large-scale and complex industry mechanisms.

IoT technology also adds the ability to create a network of multiple smart devices

allowing them to communicate with each other. This enables them to perform

various tasks autonomously, like monitoring environmental conditions or keeping

track of shipments and inventory. The capabilities are vast[44].

2.2.1 Industry Scale

IoT technology can be implemented in many different industries with very different

purposes. Everything from warehouse logistics to the health care sector as well as

farming and agriculture. IoT devices are used to monitor many different parame-

ters, which can help to identify patterns and anomalies at the moment they occur,

because of their real-time capabilities. This is advantageous for companies to spot

errors and optimize their production, which in the long run can help cut costs and
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maximize profit and efficiency[44]. Another example is the medical healthcare field,

where IoT is used when patients are either monitored or tracked for diagnostics or

surveillance[21].

2.2.2 Consumer Scale

IoT devices can be found in many people’s homes and are used by most in their

everyday life[13]. The term smart home is often used to describe the homes of peo-

ple where IoT technology is used to enhance already existing items, like switching

the light on and off or moving the blinds up and down. By incorporating IoT into

these items they can be controlled from a remote device over the internet, usually

being people’s smartphones. Especially security in smart homes is prevalent, for

instance, if someone is using your house doorbell or breaks into your house, you

will receive an alert about these actions. These are just a few examples of the

many possibilities of connecting your home to the internet to monitor, manage,

and control various household items.

2.3 IoT Architecture

To fully grasp the capabilities and the innovative potential that come with IoT, it

is crucial to understand its technical foundations. These foundations are built on

a variety of technologies that allow one or more devices to autonomously collect,

process, and transmit data.

Figure 2: 5 Layer Diagram of The IoT Architecture[36].

.

The architecture of an IoT technology stack can be split into five layers as seen in

figure 2. All of these layers play an essential role in enabling the integration and

communication of devices, keeping them connected. This technology stack is found

in all IoT technologies, no matter the scale of the system, and it is the combina-

tion of these layers that form the foundation upon which an IoT solution is built.

They facilitate, capture, process, and distribute data across environments[36]. The

following subsections will describe the different layers of the 5-layer technology

stack.
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2.3.1 Device Hardware

The first layer of the technology stack is device hardware, this is where the ”Things”,

in the Internet of Things, are found. These devices are either products that are

inherently connected or devices modified to make them connected. Depending on

the solution and the needs of the project, the first part of the device hardware can

be as small and simple as a System on a Chip (SoC), or if it is more demanding

it can be a microcontroller (MC)[36]. An MC serves as the central processing unit

and runs dedicated code that is programmed to manage inputs from sensors and

return control outputs. Examples of popular MC’s are[17]:

• Raspberry Pi, is a more complex MC, able to run an operating system

(OS) offering a richer programming environment and greater computational

power.

• Arduino, is more widespread offering larger documentation and more projects

online, however, it does not offer the same computation power as its com-

petitors, and is mostly used in smaller projects or schools.

• ESP32, is a very small budget-friendly MC offering built-in Wi-Fi, which

makes it suited for applications requiring wireless internet connectivity for

data transmission. However, they do tend to require higher technical knowl-

edge than their competitors.

MCs are primarily used to perform specific tasks based on real-time data and are

designed to be small and consume minimal power. This energy efficiency combined

with the ability to handle and compute data from sensors is the reason that MCs

have an essential role when designing IoT devices[46].

Sensors are the second part of the device hardware layer. Sensors can be added to

an MC to gather data from the surrounding environment. These data can include

measurements such as temperature, humidity, motion, light, and many others,

depending on the specific sensor used. Sensors play an important role in capturing

data, but to utilize the full potential of IoT these sensors should be connected to

an actuator. An actuator is a component that is triggered based on the readings of

a sensor. For example, the actuator could be a cooling fan that waits for a signal to

start or stop from the controller. The controller will send a signal when a certain

temperature from the sensor is reached[16].

2.3.2 Device Software

The device software layer is the layer that turns the hardware into a smart device.

It defines how and what software you use on your device hardware, as well as

how you communicate with the cloud layer or other devices. It is a crucial layer,
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regarding cost. The creation of hardware is usually more costly than software since

it can be very expensive to build hardware for specific purposes. It is therefore,

easier to have a more generic piece of hardware that is multi-purposed, and then

create specific software that makes you utilize the hardware in a specific way. This

can help in cutting costs and making sure that if any customization is needed to be

done in the future, it can be done through software instead of needing to rebuild the

hardware. This is known as software-defined hardware, where the device software

gives the hardware its purpose, and can make the hardware device serve multiple

applications[36].

2.3.3 Communication

IoT communication is the connection of various devices over the internet. It is

an important factor in IoT technology since communication enables the devices to

gather and exchange data. All IoT devices need to have reliable, but also effective

communication protocols to be implemented properly. This can be anything as sim-

ple as WiFi or Bluetooth, or something more specific like SigFox[42] or MQTT[32].

MQTT is an IoT communication protocol designed as a publish/subscribe messag-

ing transport. MQTT today is used in all kinds of applications, both in consumer

and industry scale systems[38].

2.3.4 Cloud Platform

In the fourth layer of the technology stack, we find the backbone of any IoT solution,

the cloud platform. This layer encapsulates everything happening in the cloud,

including computation and storage. There are a lot of cloud services available for

an IoT system, e.g. AWS, Microsoft Azure, and Oracle, to mention a few.

Data Computation and Processing

To make sense of the data collected by the hardware there needs to be some kind

of data processing present in an IoT solution. This processing is the collection and

manipulation of data to produce meaningful information[30], which is then saved

in a chosen storage solution.

Data Storage

There exist many different types of databases, and each has its benefits and draw-

backs. Databases can mainly be categorized into two groups, relational and non-

relational databases. The main difference between the two is that a relational

database uses structured query language to process and store data. The way data

is stored in these databases is with rows and columns in a tabular form. That

way, the different data attributes are easily presented and relationships between

them can be outlined and created[43]. Examples of such databases are MySQL
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and PostgreSQL, where both update, delete, store, etc., are all done with SQL

statements[45].

Non-relational databases do not use SQL to manage data, therefore they are also

known as NoSQL databases. They instead use a variety of data models to ac-

cess and manage information. This means that the implementation also differen-

tiates depending on the specific data model, although many NoSQL databases use

Javascript Object Notation (JSON), a lightweight data-interchange format that or-

ganizes data into key-value pairs. The benefit of using JSON is that it is not tied to

any specific programming language or platform, making it scalable and flexible[41].

In an IoT solution, both types of databases can be applied, but for larger-scale

solutions, NoSQL databases are more common. This is because traditional SQL

databases are usually less well-suited for managing larger data sets, and are there-

fore not as ideal for higher-performing systems as a NoSQL database would be[29].

2.3.5 Cloud Applications

The fifth and final layer in the IoT technology stack is the cloud applications.

These are the various applications that the end-user interacts with. Usually, it is

implemented as a form of a web application, although there are situations where

dedicated apps for desktop, mobile, and wearables might be needed. The cloud

application can be everything from a consumer-directed application that controls

the user’s blinds, or an internal application that shows warehouse statistics for a

specific firm[36].

2.4 User Friendliness

An important factor in all applications is the fact that it has to be user-friendly.

If not, no user will be able to operate the application easily, reducing the chance

of the application being a success. It is a priority that a user needs to press and

do as few actions as possible, to get all the functionality out of the application.

Developers can utilize principles like Keep It Simple, Stupid (KISS)[31], to achieve

this. Phone applications in particular are mainly operated in one hand using a

thumb, and therefore making sure that the most important parts of the application

are reachable is very important. To achieve this the thumb-zone can be used to

clarify where to place the various parts of the application.
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Figure 3: Thumb-zone mapping for left- and right-handed users.

The ”combined” zone shows the best possible placement areas for

most users[3].

Based on this, a developer should aim to place the key features within the green zone

as seen in figure 3. To prioritize simplicity and efficiency in the UI the principles

of Gestalt psychology can also be used. These can be divided into 7 laws: The

law of proximity, closure, similarity, common region, good continuation, symmetry,

and the law of common fate[7]. Each of these laws offers valuable insights into

how a user perceives and interacts with visual elements. By adhering to all of

these principles it enables a developer to create an intuitive UI that makes the user

effortlessly use the application.
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3 Related Work

Creating IoT devices to assist users in achieving various goals including in the

fitness industry is not a new phenomenon. Since the 1970s, when fitness gained

popularity among mainstream audiences[4], the quest to find new ways to enhance

training has only been expedited. And therefore it is only natural that modern

technologies are now being incorporated into the realm of fitness. This section

will describe other projects and theories that are either similar and use the same

technologies as this project or the principles of VBT, as well as other cases where

IoT devices are used in the realm of fitness and working out.

3.1 Academic Work

This section will look at three academic articles relevant to this project. Two

of them regarding VBT in strength training and one regarding the architectural

design of a system using IoT and AWS.

Article: Researched application of velocity based strength training

In the article ”Researched application of velocity based strength training”[1], a

study is conducted to provide an overview, and the benefits of monitoring movement

velocity in strength training. The article shows that VBT can calculate a minimal

velocity threshold (MVT) for a user on a given exercise. The calculated MVT will

then remain stable even with changes in the user’s maximum strength. During

an exercise, this MVT can then be used to estimate the proximity to failure, and

the exertion for the exercise, regardless of the weight being lifted. This article

therefore shows both the accuracy and effect of applying the VBT principles in

strength training and the procedure of how to implement them.

Article: Effects of velocity based training vs. traditional 1RM percentage-

based training on improving strength, jump, linear sprint and change of

direction speed performance: A Systematic review with meta-analysis

Another article ”Effects of velocity based training vs. traditional 1RM percentage-

based training on improving strength, jump, linear sprint and change of direction

speed performance: A Systematic review with meta-analysis”[6], compares other

studies that compare the training effects of VBT against the traditional 1RM per-

centage based training method. It shows that even though there are no significant

differences between the two when comparing the improvement of outcome, VBT

exhibits lower volume and less training stress. This means that by utilizing VBT

the user can possibly prevent injuries and that it could be better suited for busier

individuals.
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Article: Design of Scalable IoT Architecture Based on AWS for Smart

Live-stock

In the article ”Design of Scalable IoT Architecture Based on AWS for Smart Live-

stock”[5], a cloud-based IoT system is developed to monitor real-time livestock.

They use AWS such as IoT Core, Lambda, and DynamoDB for scalable data han-

dling. This study emphasizes automated scaling and strong data processing to meet

the needs of smart farming in the modern day. It showcases how cloud technolo-

gies can be applied in agriculture efficiently. This system is designed to specifically

enhance the management of livestock through real-time data collection and analy-

sis. This illustrates a use case of integration of IoT with cloud computing, in this

instance for agricultural advancements.

3.2 Similar Tech Stacks

In a project described by Berat Dinçkan on DEV.to[14], an ESP32 microcontroller

is employed to show how an IoT solution utilizing AWS IoT Core, DynamoDB,

and Lambda can be done. The ESP32 connects and transmits data, collected by a

sensor to monitor humidity and temperature to AWS IoT Core using the MQTT

protocol. The data is then processed by Lambda functions, which also handle

the storage management by placing the data into a DynamoDB table. Golang

is used to write the scripts in the Lambda functions for backend processing. This

integration showcases the functionality of AWS’ serverless architecture in processing

and storing sensor data gathered from IoT devices. This project gives insights into

the practical deployment of real-time data handling and infrastructure scalability

within the AWS ecosystem.

3.3 Commercial Products

There exist many fitness products that utilize VBT principles. The exact velocity

at which an exercise is completed can be measured using tools like wearables, linear

position transducers (LPT), laser optic devices, or any other distance sensor.

3.3.1 Linear Position Transducers

A commonly used VBT product in the gym are LPTs e.g. GymAware’s product[26].

These transducers are essentially wires within a mechanism that runs along the

equipment to which they are attached, commonly being barbells. It measures the

displacement during lifts along this line. This allows for the calculation of velocity.

They are relatively easy to set up and provide very accurate real-time data. This

device is also generally more affordable but despite their easy setup they require

regular calibrations to maintain the correct accuracy, and can easily be affected by

external factors like how and where the device is placed on the barbell.
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3.3.2 Wearables

Wearables are by far the most common IoT device for tracking fitness data. Many

commercial products utilizing VBT either require attachments or have to be set

up as a standalone device. This is combatted in wearable sensors. This makes it

easier for individuals during workouts, whether it is a wearable device on the body

or attached to a barbell or machine. These devices have sensors like gyroscopes

and accelerometers to accurately track velocity and movement[2]. One of the most

popular options for wearable devices on the body is the smartwatch. Almost 1 in 3

American citizens are using a smartwatch[11] and more than 9 out of 10 of these,

use their smartwatches for fitness-related reasons[8]. It is small and convenient,

and most people already wear it in their daily life. These factors are critical and

are what have caused this type of IoT device to become the most popular one.

3.3.3 Distance Sensors

Distance sensors, utilizing laser, ultrasonic, or other distance technologies can be

attached to the exercise equipment. For example, the company FLEX[39] uses a

laser to measure distance. The sensor measures the minimum and the maximum

distances while tracking the time to give the velocity of the lift. The placement of

the device has to be in correlation with a specific reference point, often a mat on the

floor or another flat consistent surface to ensure correct accuracy of the distance.

This product showcases how to utilize distance sensors to obtain the velocity of a

lift which can then be used for VBT analysis.
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4 Methodology

This section outlines the various methodologies used in the project, providing de-

tails on the approach to system design, development processes, and testing proto-

cols.

4.1 Development Framework

The choice to go with an Agile approach for the development of this project origi-

nates from how suitable it is for iterative design and how flexible it is in adapting to

user feedback and test results. In the context of developing an IoT device where it

is not certain which sensor would be the best option for VBT, whilst having to be

used in conjunction with a Raspberry Pi and connected to AWS, it is advantageous

to use the Agile development framework.

The Agile method emphasizes iterative development cycles, allowing for continuous

improvement and refinement throughout the whole life cycle of the project. This

also aligns with the evolving nature of IoT, where over time requirements might

change and new technology may be introduced. The Agile framework promotes

an environment where communication is key so there can be made the best use of

each feedback loop.

4.2 Project Phases

To navigate through the whole development process of the project, we have outlined

three phases that surround our approach to bring the project to fruition. The

different phases represent a structure, from initial concept development to final

implementation. Each phase embodies specific aspects of our project’s life cycle

that helped ensure that we met our objectives.

4.2.1 Conceptual Phase

In any iterative process, everything starts in the conceptual phase. This phase

serves as the foundational stage of a project, where the focus is on defining overar-

ching goals and objectives. Through the use of brainstorming sessions and discus-

sions, various ideas and concepts within the scope of a project’s theme are explored.

Here the emphasis is placed on generating solutions within the realm of IoT tech-

nology. Following extensive reflection and evaluation, a clear scope of the project

is then established, outlining the primary focus and objectives that need to be

pursued. This phase lays the groundwork for the following phases by providing a

direction and framework for development.
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4.2.2 Prototype Phase

The prototype phase is the transition from conceptualization to practical imple-

mentation, where the ideas are transformed into prototypes. Building upon the

outcomes of the conceptual phase, the primary objective is to develop a functional

prototype that embodies key features and functionalities of the project’s scope.

Iterative design and an Agile framework for development cycles are employed to

refine and further iterate upon prototyping, to ensure it aligns with the user re-

quirements. While a prototype may lack full optimization and is not refined, a

prototype serves as a crucial milestone for validating the concepts and gathering

early feedback. This is also where testing, such as user tests and other in-field tests

will be conducted to assess the usability and to identify areas that need improve-

ment.

4.2.3 Final Implementation Phase

The final phase is the phase of implementation, which represents the culmination

of the development journey, where the project is taken from prototyping to a fully

realized solution. Depending on the scope of a project, reaching this phase is not

always feasible, and will not always be done. This phase is about refinement and

integration of all components, to make sure that the product is interoperable and

fully functional across the system. In this phase, the key activities may include final

thorough testing if any debugging needs to be done, and the last optimization to

address remaining issues. The user feedback that would have been collected during

the previous phase enables iterative improvements, as a guide for the final adjust-

ments to the UI and functionality. Additionally, this is also where comprehensive

documentation is prepared to support users in effectively using the product. The

final implementation phase marks the official launch of the product or solution,

which is the beginning of its operational deployment and ongoing maintenance and

support.

4.3 Requirements Specification

The project entails a set of requirements. These requirements are categorized

into functional and non-functional, outlining the operational functionalities and

performance expectations of the system.

4.3.1 Functional Requirements

• The user can obtain feedback on their current workout, including data on

their repetitions and phases.

• The user can see a history of previously performed workouts.
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• The user can see their 1RM statistics for different movements performed.

• The user can easily get access to a chosen machine.

• The user can easily start and stop an exercise.

• The user can see the average intensity of their workouts.

• The user can easily navigate the application.

4.3.2 Nonfunctional Requirements

The non-functional requirements of the system are subdivided into usability, per-

formance, and implementation criteria that it must adhere to.

Usability

• The system must be accessible from smartphones, tablets, and computers no

matter what OS is used.

• The application must be able to immediately recognize a QR code.

Performance

• The system should be able to provide data right after a performed set on an

exercise is done.

• The system must accurately and efficiently calculate phases and repetitions

for a given set within 1 second.

• The application should load and display UI within 2.5 seconds.

• The system must be able to calculate its VBT data within 1 second.

Implementation

• The system must be provided through a progressive web application interface.

• The system must provide a graphical user interface (GUI), that a user can

interact with.

• The system must be able to observe and monitor data produced by a user.

• The system must store data collected in a non-relational database.
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4.4 Testing

The project is meant to be something that regular people who exercise can use in

their workouts, therefore testing it is important. First and foremost we need to see

whether the application can be used by people who workout. Is it user-friendly and

can it be operated by the user? Secondly, does it add value to people’s workouts,

do they obtain information that they did not possess beforehand? Lastly, does

the product perform as intended, are the different technologies working together?

Are the data collected, will it be handled correctly and sent to the database, and

does the database store the correct data, that can then be fetched elsewhere? To

answer these questions, a set of tests have been put in place. Different tests have

been conducted to give the best possible answer as to whether the product works

or not. Mock tests, field tests, and application user tests are conducted to get

the most accurate understanding of the project’s capabilities at each step of the

development.

4.4.1 Mock Testing

Mock tests are usually performed early in the project and periodically throughout.

This method of testing involves using self-created simulated data instead of real-life

data. The benefit of mock testing is that it allows for quick and easy testing without

needing the complete setup of data-collecting hardware. This is particularly useful

for testing different parts of the project independently, especially when the entire

system is not fully integrated or operational[35].

4.4.2 Field Test

Field testing refers to the practice of testing the product in a real-life scenario,

away from any controlled environment. The goal of this test is to identify any

issues or problems that can occur when the product is tested in action before the

final release is put out. It can be for validating the software performance in different

environments or detecting any unforeseen bugs, to enhance the user’s experience

with the product[9].

4.4.3 User Test

User tests are conducted to see if a user can perform specific tasks on the product.

The goal is to see if a user who is not familiar with the product can naturally figure

out how to use it on their own. User tests are therefore testing the interface of the

application, and it is important that the person that the user tests are performed

on is neutral and does not have any experience with the product beforehand. There

exist different types of user tests, they can either be done in person with the user

or remotely. They can also be moderated or unmoderated, meaning you are asking
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the user performing the test questions, whilst he is doing the test. These are great

for gaining insights on what the user is thinking while using the application, but

doing it unmoderated gives a more realistic view of how the person interacts with

the application[27].

Evaluating User Tests

There are various ways one can evaluate a performed user test. One of these is

using the system usability scale (SUS). The SUS has been used for over 30 years

and provides a quick and easy way to evaluate almost all systems compared to

industry standards. It is quick, cheap, and only consists of a 10-question survey,

which the users of your system will answer. By then applying the scoring system on

these answers, the system will get an overall score between 0 and 100. If the score

is above 80.3 the system is almost perfect and is loved by the users, if the score is

around 68 the system is alright, but could be better. Finally, if the score is 51 or

below the system usability should be the number one priority moving forward[28].
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5 Implementation of The Architecture

In this section, the technologies selected for each layer of the IoT technology stack

used in our implementation will be outlined. The choices for the technologies on

each of the layers are based on the requirements of the project.

5.1 Device Hardware

In this project, we have used an ultrasonic sensor. An ultrasonic sensor is a motion

sensor that uses high-frequency sound waves to detect the distance between the

sensor and its target. We chose to pair this sensor with a Raspberry Pi to obtain

greater computational power and the possibility of freely choosing between what

programming language we want to write in.

5.2 Device Software

On a Raspberry Pi different operating systems are available to choose between. We

selected Raspberry Pi OS due to its ease of setup and its popularity among the

available OSs.

Choosing the right programming language is crucial for the controlling software.

Python was selected for the device software because that is also what we used in

the AWS Lambda functions. This provides more consistency across the technol-

ogy stack. Additionally, Python’s ability to efficiently handle data simplifies the

development and maintenance of the software.

A Python script is configured to run as a Linux service, which allows it to execute

automatically once the Raspberry Pi is started and connected to WiFi. This setup

ensures the script operates reliably and is always ready.

Initially, the script is waiting, subscribing to an MQTT topic that receives either

a ”start” or ”stop” command. Upon receiving a ”start” command, the script

activates the sensor to collect raw data. Due to the nature of raw sensor data,

which often includes a significant amount of noise and redundant values, not all

collected data is immediately useful for fitness tracking or analysis.

To address this, another script was implemented to perform noise reduction and

process the data. This script is executed with each update on the sensor, and by

comparing distances, it processes the data into useful fitness data. By comparing

the previous distance with the current one, the script calculates the current phase,

that the user is performing, being either concentric or eccentric. By keeping track

of this, the script can then calculate repetitions based on phase changes, and send

a datapoint in JSON, for each phase to our cloud implementation via the MQTT

protocol. A pseudo-code implementation outlining our logic is presented below:
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1 phase = eccentric if previousDistance < currentDistance else

phase = Concentric

2

3 if previousPhase != currentPhase:

4 detectPhaseChange ()

To reduce the amount of calculation, the script also contains a noise reduction

threshold for the distance. This works by only processing data points from the sen-

sor where the distance change is at least 3 centimeters. This removes unnecessary

data processing and also ensures that a phase change is only recognized on bigger

direction changes. This means that small direction changes, which might happen

when the user is under heavy exertion, will not cause a phase change. The script

continues until a ”stop” command is received, at which point the data collection

and processing will stop. To correctly track the last phase of the movement, a run-

ning average is introduced that constantly tracks the reset point of the eccentric

phases. This reset point is calculated based on the maximum distance of all previ-

ous eccentric. The last phase is then calculated to be the last movement within a

margin of this reset point. This ensures that the last phase will be tracked to the

reset point’s distance and time, and not the distance and time present when the

”stop” command is received.

This collection of scripts on our hardware ensures that the cloud receives only the

most relevant, significant, and clean fitness data, optimizing both the functionality

and cost-effectiveness of the IoT solution, as well as ensuring that each script only

has one purpose.

5.3 Data Management

Our data management journey starts with the collection of data. Our sensor collects

raw data which is then immediately filtered and processed on our Raspberry Pi.

Once the data has been computed from raw data into useful fitness data it will

be published via MQTT to the topic ”sensors/data”. This processing is done to

minimize the amount of data traffic coming from the Pi by only sending relevant

fitness data to our cloud services. In AWS a trigger on the ”sensors/data” topic

will execute a Lambda function for a final cleaning of the data before it is sent to a

table in our database. A trigger on this database will then execute an AWS Lambda

function containing our VBT formulas on the latest inserted or modified database

item, computing the intensity and one rep max (1RM) for the set performed, which

is put into another table.
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1 data_point = {

2 "distance ": 50,

3 "time": 0.8169729709625244 ,

4 "phaseTime ": 0.8169729709625244 ,

5 "set": 1,

6 "rep": 1,

7 "phase ": "Concentric",

8 "date": "25/04/2024" ,

9 "machineId ": "Machine1",

10 "load": 0

11 }

Figure 4: Example of a data point sent via the MQTT protocol.

5.4 Communication

Among the various communication protocols available, we have chosen MQTT to be

used as the communication protocol for our project. This is due to its lightweight

and efficient nature, making it highly suitable for limited bandwidth, which is

typical of IoT environments[32]. In our project, MQTT facilitates communication

between the IoT device and a specific topic in the MQTT broker, which is an AWS

IoT core instance.

Communication Between The Frontend and Cloud

In the application, data for the statistics and history page is directly fetched from

AWS DynamoDB. The statistics page queries the ”VelocityData” table using sort

keys to retrieve metrics such as average intensity and 1RM progress. The history

page accesses the ”WorkoutData” table, also by using sort keys to filter and organize

the detailed workout data coming from specific dates and machines. Also, the

device interaction like starting and stopping workouts is managed through a REST

call that triggers an AWS Lambda function via AWS API Gateway. This function

executes code that communicates with the IoT device to let it know whether to

start or stop collecting raw sensor data.

5.5 Cloud Platform

Our entire cloud platform is hosted on AWS, consisting of AWS Lambda for data

processing and AWS DynamoDB for data storage. We chose to use AWS since

their IoT services are well known, and they have great free tier options. Also, AWS

IoT Core played a role in this choice because of its built-in MQTT broker that

provides an integrated solution for the communication between our IoT device and

the cloud. Another reason for the choice is the coherent integration of services

like AWS Lambda and AWS DynamoDB. This cloud setup allowed us to focus
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more on developing the application and computation rather than managing the

infrastructure.

Data Computation and Processing

AWS Lambda is a serverless computing service that executes code in response to

certain events[19]. We have set up a trigger with a rule query statement: SELECT *

FROM "sensors/data" which can be seen in figure 5, ensuring that every message

published to this topic triggers a Lambda function that performs a smaller data

cleaning, ensuring that the data is in the correct format, before sending it to our

database table ”WorkoutData”.

Figure 5: The Lambda trigger for our IoT topic.

In this table, we have set another trigger that runs our second Lambda function,

the VBT computation. This trigger runs each time the table receives a change, and

a rule has been set to only execute code when the change is an INSERT or MODIFY

event.

1 for record in event.get(’Records ’):

2 if record.get(’eventName ’) in (’INSERT ’) or

3 record.get(’eventName ’) in (’MODIFY ’):

4 data = record.get(’dynamodb ’).get(’NewImage ’)

If this rule is met the VBT Lambda function then calculates the intensity for the

given set in the ”WorkoutData” table. This means that each time a new phase is

put in the table the VBT function will execute, applying the aforementioned VBT

formulas to calculate the intensity and 1RM of the set. It works by keeping track

of phases in a given set, and if more than 2 phases are present it will use these to

perform its calculation. First, it uses the distance and time of all phases present

to calculate an average velocity for the set.

1 for distance , time in datapoints:

2 totalDistance += distance

3 totalTime += time

4 velocity = (totalDistance / 100) / totalTime
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This velocity will then be used on par with a 100% intensity velocity threshold,

based on the unique machineID, to calculate how close the set was to 100% intensity

for that specific machine. This threshold was set by calculating the mean velocity

across all exercises targeting the same muscle group for novice lifters using the

1RM velocity table in[24].

1 intensity = machineIdThresholdValue / velocity * 100

If the Load attribute is present in the set, the function will then use the calculated

intensity to calculate a theoretical 1RM for the given set by multiplying the load

by the distance to the 100% threshold for the machine.

1 1RM = load * (100 / intensity)

This calculated VBT data is then put into our ”VelocityData” table. This design

allows for real-time processing of incoming data without the need for dedicated

server management.

AWS DynamoDB is a non-relational database, which we chose for its high-performance

capabilities. It offers not only the benefits of a typical NoSQL database but also

runs serverless like AWS Lambda. This serverless architecture aligns with the agile

nature of our project. Eliminating the need for manual provisioning and mainte-

nance means that there is no downtime maintenance, no patching, and it scales to

zero[18]. Additionally, the pay-as-you-go model helps to ensure cost efficiency.

In AWS DynamoDB we have two different tables, one for the sets performed by

the user and one for the VBT data. We structured our ”WorkoutData” table

using a partition key, formatted as USER#<UUID>. This key ensures that data loads

efficiently and supports our primary access pattern, which often involves retrieving

all data related to a single user.

The sort key is composed of several attributes:

1 SESSION#<SessionDate ># MACHINE#<MachineID >#SET#<SetNumber >#REP

#<RepNumber >#PHASE#<Phase >

This composite sort key organizes data within each partition, allowing us to store

and query workout sessions efficiently. It supports precise queries at multiple levels

of detail. From entire sessions down to specific repetitions and phases without the

need for full table scans. For each repetition, we store items for both the eccentric

and concentric phases in each repetition.
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Name Value Type

MachineId Machine1 String

SessionDate 23/04/2024 String

Phase Concentric String

PhaseTime 0.9485 Number

Distance 17.45 Number

Load 50 Number

Rep 3 Number

Set 2 Number

Table 1: A single random item in the ”WorkoutData” table.

For the ”VelocityData” table, we used the same partition key, formatted as USER#<UUID>,

to ensure consistency in the database. The sort key is composed of several attributes

to follow the same format as our ”WorkoutData” table:

1 MACHINE#<MachineID ># SESSION#<SessionDate >#SET#<SetNumber >

For each set present in the ”WorkoutData” table, we store a data point containing

the calculated intensity and 1RM for the given set.

Name Value Type

MachineId Machine1 String

SessionDate 23/04/2024 String

Intensity 100 Number

OneRepMax 100 Number

Set 2 Number

Table 2: Example of a single random item in the ”VelocityData” table.

5.6 Cloud Applications

In this project the cloud application, being the user interface, was developed as

a PWA. In this, the user can see insights based on their training. The chosen

technology stack for the cloud application layer focuses on both performance and

user experience. This ensures that the application is efficient and responsive across

all devices. The application is built using Next.js, a React framework that enhances

the user experience in various ways[33]. We chose to use this framework because we

were already familiar with it. A PWA takes advantage of modern web capabilities to

deliver an app-like experience as if it were written in a native mobile programming

language[20]. Opting for a PWA over a traditional native application was a strategic
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decision to avoid having to deploy the application through Google Play and Apple

App Store. This allows for an easier and faster deployment and also lets us update

the application directly via the web. While it is designed heavily with a mobile-first

approach, the PWA still maintains all functionalities across all platforms, including

desktops.

Typescript is the chosen programming language for developing the PWA. It sig-

nificantly reduces the potential for runtime errors and bugs with its very strict

syntax. With limited time for development, this assisted in minimizing the time

spent debugging code.

For styling, Tailwind CSS is chosen for its utility-first approach, which is where

you use predefined classes to write CSS directly in the HTML. This all leads to less

code, resulting in faster development[15].

To further improve the development, a newly released, reusable component library

called shadcn/ui was utilized[23]. Copying and pasting premade high-quality and

tailored components made the development easier and faster while also improving

the overall UI.

For the choice of hosting our PWA, we chose to use Vercel. Vercel is made by

the same creators that are behind Next.js. And therefore has 100% support for

everything Next.js offers, providing a flawless integration with our application[40].

5.7 Designing The Architecture

After thorough consideration of the possibilities within cloud infrastructure, we

chose AWS due to its comprehensive list of services, which aligned perfectly with

our needs for this project, and easy integration into the rest of our architecture.
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Figure 6: A diagram visualizing our system architecture.

The following list describes the flow of data and user interactions within the system

architecture, corresponding to the numbers indicated in the architecture diagram:

1. Users initiate a workout session by scanning a QR code on a fitness machine

using the application.

2. After scanning the QR code, the application displays a ’start’ button. Press-

ing this button invokes an API Gateway endpoint, which triggers an AWS

Lambda function.

3. The Lambda function sends a ’start’ command via MQTT to the Raspberry

Pi, signaling the start of data collection. Pressing ’stop’ sends a ’stop’ com-

mand to conclude data collection.

4. The Raspberry Pi collects raw sensor data and computes it into a struc-

tured JSON payload containing details on distance, time, phase, set number,

repetition, and other workout parameters.

5. The structured data is sent from the Raspberry Pi to AWS IoT Core using

the MQTT protocol.

6. An SQL rule in AWS IoT Core, SELECT * FROM "sensors/data", triggers

a Lambda function whenever a message is published to the ”sensors/data”

topic.

7. This Lambda function cleans the incoming data to fit the DynamoDB schema

and inserts it into the table.
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8. Upon insertion of new data into DynamoDB, the second Lambda function

calculates intensity based on the distance and time values in the data.

9. If the user inputs or changes the weight used in a set, the corresponding data

in DynamoDB is updated. This update triggers the second Lambda function

to calculate the 1RM based on the weight input.

10. The history page of the application allows users to select a date from a cal-

endar to fetch workout data. Detailed workout information, including set

and individual repetition details containing phase and duration, is retrieved,

cached, and displayed from AWS DynamoDB.

11. The statistics page of the application presents aggregate workout data. Users

can view average intensity, total workouts, and 1RM for each machine, along

with a graphical representation of their progress over time.

In figure 6 a diagram displaying our system architecture is shown. It illustrates all

the different parts of our system and shows how they interact with each other.
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6 Process

Throughout this project, our product has undergone an evolution that is driven by

an iterative approach to accommodate changing requirements, different findings,

and user feedback. This iterative process has allowed us to adapt and improve in

each iteration of development. This section will give an overview of the development

process, describing the milestones achieved in each iteration.

Figure 7: Project Timeline.

In the timeline of the project, we have undergone three iterations, each representing

a distinct period in our journey toward a final prototype. In figure 7, it is depicted

when each iteration, phase, and major testing took place. We will go more in-depth

in the following subsections, and explore each iteration in detail, outlining what

the product looked like at the time and what technologies it consisted of.

The project began with the conceptual phase. The decisions made here revolved

primarily around what hardware and technology to use. In terms of hardware, we

chose to use a Raspberry Pi, with Raspberry Pi OS, over its competitors the ESP32

and Arduino. This was because of its superior processing capabilities, which al-

lowed us to compute the raw data before sending it to our cloud services. To get the

desired data from a user performing an exercise we chose to use an accelerometer,

based on a recommendation from our supervisor, which is a sensor that measures

acceleration forces. For the cloud services needed, we decided to use AWS pri-

marily due to their easy integration with IoT devices, and the allowance of good

interoperability. AWS met all our criteria and provided a free tier, enabling us to

start our project promptly and without cost. Of the available services we chose to

use AWS IoT Core for communication with the hardware, AWS Lambda for our

cloud computing, and AWS DynamoDB for our database. With these choices being

made we were able to transition into the prototype phase and the first iteration.

6.1 Iteration 1

We started working on the product in the first iteration, right after the conceptual

phase. This marked the beginning of the prototype phase. In this iteration’s de-

velopment, we ensured each layer in our technology stack worked by itself. This
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means that we set up our Raspberry Pi to read sensor data from the accelerome-

ter. AWS Lambda had some simple computation that could calculate phases and

repetitions on mocked sensor data, and a single database table was set up with

a relational structure, by nesting each item’s attributes. Lastly, we had a simple

frontend template. By ensuring that all layers were up and running by themselves,

we had the necessary building blocks for the following iterations.

We also explored various options for enabling users to access workout equipment

effortlessly. Among the considerations, we opted for an NFC tag solution due to its

simplicity and widespread familiarity amongst users. The NFC technology, which

is commonly used in platforms like Apple Wallet[37], would offer a compact and

user-friendly method for users to interact with the fitness equipment.

For our frontend technology stack, we chose Next.js paired with Tailwind CSS and

TypeScript due to their combined benefits in terms of performance and maintain-

ability. These technologies work well together, enabling us to create a PWA. For

the cloud computing, we chose to utilize Python. The reasoning for this was based

on the fact that we did not expect any heavy computing, but rather multiple small

scripts. Furthermore, we knew that we wanted real-time computation and therefore

had to use a quick and efficient language.

The reason we chose to create a PWA instead of a normal website or a classic

mobile application, was because we wanted the user to be able to access data from

his workouts both on his phone and his computer. By creating a PWA it is possible

to make the application look and feel like a native application for both mobile as

well as for desktop. Even though we created a PWA, our intention was always for

the user to interact with the IoT device exclusively through their smartphone.

Wireframing

Early in the development phase, we created a low-fidelity wireframe to use as a

reference for the design and layout of our UI. The wireframe served as a blueprint

for the frontend development to ensure that all the essential features and UI designs

were considered going forward. As the first iteration progressed, new technical

insights allowed us to refine the UI with small increases in the right direction. The

wireframe can be seen in appendix C.
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Figure 8: Screenshot of statistics

page from iteration 1 of the ap-

plication.

Figure 9: Screenshot of history

page from iteration 1 of the ap-

plication.

The frontend was very simple at this iteration, with 4 pages at the time. The

page where the user starts a workout did not have a way of scanning and choosing

a machine, and could not communicate with the hardware. The statistics page

lacked functionality and design, only displaying hardcoded data instead of dynamic

content, as depicted in figure 8. Similarly, the history page lacked usability and

functionality, rendering it not user-friendly and without real data, as illustrated

in figure 9. The profile page, accessible from the navigation bar, was just a blank

page without any content.

6.1.1 Testing

For the first iteration, we only tested the AWS Lambda computation code. This

was because the frontend, as well as the Raspberry Pi, were not developed enough

to test, and the system as a whole was not connected rendering it impossible to

perform system tests.

29



Mock Testing

We only conducted minimal mock testing on our AWS Lambda computation to

ensure that it calculated somewhat correct phases and repetitions. We created

mocked sensor data, simulating what we expected real-life sensor data to be. This

mock data was then parsed into our function in various tests, ensuring the outputs

of the various functions were equal to the expected ones.

1 [

2 {

3 y_axis: 0,

4 x_axis: 0,

5 time: 0.0,

6 },

7 {

8 y_axis: 10,

9 x_axis: 0,

10 time: 2.0,

11 },

12 {

13 y_axis: 20,

14 x_axis: 0,

15 time: 4.0,

16 },

17 {

18 y_axis: 10,

19 x_axis: 0,

20 time: 6.0,

21 },

22 {

23 y_axis: 0,

24 x_axis: 0,

25 time: 8.0,

26 }

27 ]

Figure 10: Mock sensor data.

In figure 10 an example of the used mock sensor data is depicted. We experienced

that the overall intended functionality of the code worked.

6.2 Iteration 2

The second iteration was mostly focused on connecting the different layers and

creating a working prototype, ready for user tests at the end of the iteration.

We researched other suitable sensors to replace the accelerometer and ended up
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choosing an ultrasonic sensor since its distance tracking range was in line with the

distance the weight on a pin-loaded fitness machine travels.

Afterwards, we integrated this sensor onto our Raspberry Pi, making some im-

provements to our cloud code along the way to support the change. We had chosen

to use NFC technology to be the way a user connects to the fitness machine, but

we opted for a simpler solution which was a QR scanner instead.

The AWS Lambda code was refactored to solve some edge case issues that had

been discovered, which allowed the code to provide a more precise measurement

of the users’ movement. In this iteration, our AWS DynamoDB table was also

refactored to use a non-relational table structure, as it should be since we’re using

AWS DynamoDB.

In this iteration, we also implemented another AWS Lambda function to perform

more computation, based on the VBT principles. This was done to provide more

in-depth, and interesting feedback to the user, based on their current exercise. The

provided feedback was the average calculated intensity of a set and a theoretical

1RM load for the specific exercise. To store this we created another table in our

database, also structured in a non-relational style. However, this second table

caused the overall structure of our database to be relational, since the two tables

shared the same partition key that was a unique user identification.

We noticed some issues regarding imprecise AWS Lambda calculations, which we

thought were due to the delay between the MC and the first Lambda function.

To combat this, we choose to move the part of the code containing the movement

calculation away from AWS Lambda and into the Raspberry Pi instead. This was

also done to minimize the amount of communication needed and to utilize the

computation power of the Raspberry Pi since it is the reason we chose to use this

MC to begin with.

For the automatic execution of our AWS Lambda functions, we used various trig-

gers. This was done to activate the correct function based on certain rules or events.

We set up a trigger on one of the AWS Lambda functions that activated it when

the Raspberry Pi sent data to a certain MQTT topic. For the VBT computation,

another trigger was linked to the WorkoutData table and activated the function

on all table events, for example when an item was inserted or modified. By doing

this, the cloud computation was fully automatic.
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Figure 11: Screenshot of

statistics page from iter-

ation 2 of the applica-

tion.

Figure 12: Screenshot of

history page from itera-

tion 2 of the application.

Figure 13: Screenshot of

detail sheet on the his-

tory page from iteration

2 of the application.

The new computational features displayed in the application can be seen in figure

11. Not only does it display the average intensity, but also the total amount of

workouts you have done. In addition to displaying the 1RM for the user, the user

can see a graph of the progress in their 1RM for specific exercises by sliding since it

is implemented as a carousel. The history page in figure 12 has been updated, so it

gives a comprehensive overview of each set performed on a machine, including the

number of repetitions, the total time it took to perform those repetitions and the

load. As an additional feature that can be seen in figure 13, there is a sheet that

shows additional content of the set. The content shown is a more detailed look at

each repetition from the chosen set, providing the total time each repetition took

along with each phase and phase time for each repetition.

6.2.1 Testing

In the second iteration, the big improvements to the system as a whole allowed us

to begin testing more thoroughly on each layer in our system. As well as ending

the iteration with multiple field tests and a user test on our application. This was

done to obtain valuable insights and user feedback, on where our product was still

lacking or behaving unexpectedly, so this could be addressed in the next iteration.
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Mock Tests

We continued to use mock tests throughout the entirety of this iteration. To en-

sure that each layer in our system independently performed as expected. This

included the computation on the Raspberry Pi, the VBT computation as well as

the frontend.

1 [

2 {

3 "is_first_entry ": true ,

4 "distance ": 0,

5 "time": 0.0,

6 "machineid ": "machine1",

7 "is_last_entry ": false

8 },

9 {

10 "is_first_entry ": false ,

11 "distance ": 25,

12 "time": 1.0,

13 "machineid ": "machine1",

14 "is_last_entry ": false

15 },

16 {

17 "is_first_entry ": false ,

18 "distance ": 50,

19 "time": 2.0,

20 "machineid ": "machine1",

21 "is_last_entry ": false

22 },

23 {

24 "is_first_entry ": false ,

25 "distance ": 25,

26 "time": 3.0,

27 "machineid ": "machine1",

28 "is_last_entry ": false

29 },

30 {

31 "is_first_entry ": false ,

32 "distance ": 0,

33 "time": 4.0,

34 "machineid ": "machine1",

35 "is_last_entry ": true

36 },

37 ]

38

Figure 14: Mock data used to test the Raspberry Pi computation.

In figure 14, the mock data we used to test our Raspberry Pi computation is shown.
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The data simulates real-life data from our sensor and was used to ensure that our

computation calculated phases and repetitions as intended. The data consist of

multiple data points simulating sensor readings.

In appendix A figures 23, 24 & 25, the mock data used to test our VBT computation

is depicted. This mock data was used to simulate the data streams coming from our

database trigger, to test the functionality and calculation of our VBT computation.

1 {

2 USER#<UUID >: USER #001

3 MACHINE#<MachineID ># SESSION#<SessionDate >#SET#<SetNumber >#REP#<

RepNumber ># PHASE#<Phase >: MACHINE#Machine1#SESSION #10/04/2024# SET

#1# REP #1# PHASE#Concentric

4 Distance: 33.91

5 Load: 0

6 MachineId: Machine1

7 Phase: Concentric

8 PhaseTime: 1.21

9 Rep: 1

10 SessionDate: 10/04/2024

11 Set: 1

12 }

Figure 15: Mock database data for the frontend mock testing.

In Figure 15, an example of mock data simulating computed data in the database

is depicted. This mock data was used to simulate real data that would be in the

database that the application would fetch. Through mock testing, the code we

developed was scrutinized to make sure its ability to display the right data was

working correctly.

Field Testing

In this project, all field testing performed was done by ourselves and not a des-

ignated user. This was done to carry out the tests quickly and without the need

for an external user. To ensure that no bias was present in these experiments, the

tests only tested the tracking and calculation done by our prototype. This type

of testing was done to guarantee the processed data were also correct in a real-life

setting.

Field Test 1: Testing For Repetition Accuracy

For the first of our conducted field tests, we set up the sensor on a row machine. We

then performed exactly 2 sets of 5 repetitions each on the machine. To ascertain

that the phases, phase times, and repetitions are all calculated properly, an observer
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will observe the test and time each phase with a stopwatch. The testing criteria

for whether the test is successful or a failure is:

• The repetitions performed for each set correlate to the number of repetitions

presented in the database and application.

• The phases tracked in the database correlate with the phases performed.

• The phase times in the database and application are within 0.25 seconds of

the observer’s manually tracked phase times.

Field Test 2: Testing Level of Intensity

For our second field test, we used the same setup as for the first. Here we will

perform 1 set until failure, and 1 set until moderate fatigue on a machine. This

means that the number of repetitions does not matter. The first set will stop when

the subject physically can not perform more repetitions (RPE 10). The second set

will stop when he experiences what he perceives as moderate fatigue (RPE 7.5)[34].

The testing criteria for whether this test is successful or a failure is that the level

of intensity displayed on the application is within 10% of the perceived intensity

when we performed the exercise.

Field Test Results

Figure 16: Test 1 database data.
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Set 1 phase Set 1 time Set 2 phase Set 2 time

Concentric: 2.5 Concentric: 2.2

Eccentric: 2.6 Eccentric: 2.8

Concentric: 1.9 Concentric: 2.5

Eccentric: 1.5 Eccentric: 1.9

Concentric: 1.6 Concentric: 2.1

Eccentric: 2.3 Eccentric: 2.2

Concentric: 1.5 Concentric: 2.4

Eccentric: 1.9 Eccentric: 1.7

Concentric: 2.7 Concentric: 2.7

Eccentric: 2.5 Eccentric: 2.3

Table 3: Observed data for test 1.

For the results of the first field test, we expected to see exactly 2 sets of 5 repetitions

in the database, as well as correctly ordered phases and phase times within 0.25

seconds of the actual phase time. When we compared the database data in figure

16, with the observed notations in table 3, we could see that the sets and repeti-

tions were calculated correctly. However, the phases were inversed, meaning that

both sets started with an eccentric phase instead of the observed concentric phase.

Finally, almost all the phase times were also calculated correctly to be within the

0.25 second margin, except for the first and last phases of each set. From this test,

we found that these were tracked from the time that the subject pressed the start

and stop buttons in the application, and not from the beginning and end of the

movement.

For the second test, we expected to see a calculated intensity within 10% of the

subject’s perceived intensity. After the first set was finished an RPE of 10 was

described. In other words, a perceived intensity of around 100%. For the second

set, an RPE of 6 was described, meaning an intensity of 60%.

Figure 17: Test 2 database data.

As shown in the database in figure 17, the calculated intensity for the sets were

156% and 256%. Since the described intensity was around 100% and 60%, it was

clear that our intensity calculation was incorrect. Both because the values did not

correspond with the described values, and because the intensity should never be

able to exceed 100%.
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User Test: PWA

For the application user test, the user will be asked to open and navigate the

application by himself without any help, whilst describing what he is doing and

experiencing. The criteria for this test to pass is a positive response from the user,

along with a SUS score of at least 68. Describing an intuitive design and easy

navigation around our application and its features.

User Test Observations & Results

The full transcript in Danish of the user test can be seen in appendix E figure 59.

Based on this it is obvious that the user could navigate the PWA by himself, and

find most of the features. The only thing the user did not understand immediately

was the intensity and 1RM fields in the statistics tab. However, the information

buttons provided, helped him understand what these fields meant. There were still

some features in the application that the user did not find by himself, those being

the swipeable cards of 1RM’s on the statistics page and the date picker and ”set

weight” feature on the history page. After the test was over, we also conducted a

SUS survey on the user, this can be seen in appendix E figure 60. Here, the PWA

scored 80 out of 100, which places it in the second highest percentile ”excellent”

18, despite the small issues described in this test.

Figure 18: System usability scale scoring[22].

.

Getting these overall positive comments from the user, combined with the high

SUS score. We can safely assume that the first user test passes the criteria being

a SUS score of at least 68 along with positive feedback from the user.
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6.3 Iteration 3

Based on the valuable insights gained from our field tests and user tests we initiated

the third and final iteration of the project creating a final prototype. Here the focus

was to correct the errors and bugs within our product, as well as to improve the

UI based on the user feedback that we found from these tests.

Figure 19: Iteration 2

Raspberry Pi.

Figure 20: Iteration 2 ul-

trasonic sensor.

Figure 21: Iteration 3 all

components.

Significant changes were made to the hardware setup to make it more compact

and easy to configure. The Raspberry Pi and the ultrasonic sensor were previously

connected via a breadboard, jumper wires, and resistors as seen in 19 & 20. In

this iteration, the sensor and Raspberry Pi were encased in custom designed 3D-

printed housings as seen in figure 21. The new case on the Raspberry Pi featured

a honeycomb design at the top. This provided a more organized passage for the

wires. Similarly, the case for the sensor was designed to protect the sensor and

made sure that it could stay completely still as it was very sensitive. The use of a

breadboard was phased out in favor of Wago connectors, which were placed inside

the Raspberry Pi case. This change not only minimized the number of components

we needed but also reduced the risk of loose connections that could have occurred

with the breadboard.

For the data processing on the Raspberry Pi, there were two clear issues at hand.

Those being that the first and last phases were calculated wrong, and all the phases

were inverse. The latter of these issues originated from the way that we calculated

phase changes. Since a phase is logged after a phase change is detected, the current

phase theoretically did not belong to the logged phase. Luckily, this was a quick

fix where we simply reversed all phases in the code, ensuring that they were logged

as they were intended to be.

To handle the first and last phases of a set being tracked incorrectly, we imple-

mented two changes. For the first phase, a timeout was implemented so the sensor

did not start immediately after the user pressed the start button. The change

introduced a countdown in the application. This provided a better synchroniza-

tion between the sensor and the start of the exercise, resulting in a more precise

38



first phase tracking. For the last phase, we implemented a running average that

tracked the average of all eccentric phases’ maximum distance. This average was

then used to temporarily log a phase each time the distance was within a margin

of 5 centimeters of the average threshold. This meant that when the user pressed

the stop button, instead of returning the distance and time of this action, the code

returned the logged phase instead. This change enabled the code to correctly track

the last phase.

As for the VBT formulas, we did not make any big changes to the calculations.

Based on further mock testing we saw that they did calculate correctly, and the

issue we saw in the second field test of iteration two stemmed from the way the

trigger parsed database items to the AWS Lambda function. The code did receive

a small quality change in this iteration. Instead of having a hardcoded velocity

threshold, the refactoring enabled the code to recognize the machine identification

of a set and use an appropriate velocity threshold based on this. This change

provided a more precise intensity calculation for different machines since they now

have various velocity thresholds instead of a singular threshold for all machines.

For the frontend, the UI only received some small changes. These changes were

based on the user feedback gained from the user test done in the second iteration.

We added arrows on the 1RM cards to indicate that they are swipeable. High-

lighting was added for the dates in the calendar containing training data on the

history page. The text for the changeable weight on each set was underlined to

indicate the fact that it was pressable. Finally, we added a visual countdown when

starting a set, to support proper first phase tracking on the Raspberry Pi. The

whole application can be seen in appendix D.

6.3.1 Testing

At the end of this iteration in the prototype phase, we chose to replicate the first

field test from the second iteration which yielded faulty results, as well as another

user test on the application.

Mock Testing

In this iteration, we conducted minimal mock testing and focused on replicating the

tests failing in iteration two. We conducted thorough mock testing on the intensity

calculation which ultimately led us to the conclusion that the calculation itself was

correct, but the way that the trigger parsed database items was the issue causing

the wrong calculations. Based on this we chose not to reproduce the intensity field

test from iteration two in this iteration.

Field Test: Testing For Repetition Accuracy

In the second iteration, after performing the first field test, we found that we

had an issue with the first and last phases of each set being tracked incorrectly.
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As described the tracking computation was refactored in this iteration and we

therefore replicated the same field test to see if these changes correctly fixed the

issues. The setup for this test was as identical as possible to the field test in the

second iteration, as seen in Appendix B.2, though this time the Raspberry Pi and

the sensor were set up more securely on the row machine. Unlike the first test, we

performed 3 sets of 3 repetitions on the machine. This was done to obtain more

data to ascertain that the first and last phases of each set were correctly calculated.

We used an observer with a stopwatch for this, as we did in the first test, however,

he only tracked the first and last phase instead of all of the phases. The testing

criteria became as such:

• The repetitions performed for each set correlate to the number of repetitions

presented in the database and application.

• The phases tracked in the database correlate with the phases performed.

• The phase times of the first and last phase in the database and application

are within 0.25 seconds of the observer’s manually tracked phase times.

Field Test Result

Figure 22: Field test data from the ”WorkoutData” table.

First phase First phase time Last phase Last phase time

Set 1 concentric: 2.1 Set 1 eccentric: 1.2

Set 2 concentric: 2.0 Set 2 eccentric: 1.5

Set 3 concentric: 1.8 Set 3 eccentric: 1.5

Table 4: Observed data for the field test.

By comparing the observation results in table 4 to the data present in the database

seen in figure 22. It was clear that there was a big improvement from the test

conducted in the second iteration. The results and database data were almost

identical and certainly within the 0.25 second margin as specified in the criteria.

Furthermore, both the repetitions and sets in the database were correlating with

the ones specified for the test. This test passed all three test criteria successfully

proving that the changes to the code were correct.
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User Test: PWA

As in the second iteration, the PWA user test simply consisted of a user, navigating

around our PWA with no help while he described what he was doing and what his

experience was. Along with these descriptions and thoughts, a SUS survey was

also conducted. The passing criteria for the test would be positive user feedback

on the application like in the first application user test, along with a SUS score

higher than the previous score, which was 80 out of 100.

User Test Observations & Results

The full transcript in Danish of the conducted test can be found in appendix E

figure 61. Based on this transcript, it was obvious that the user could easily and

intuitively navigate the PWA by himself as well as find and use the various features

integrated, the most notable of these being the features that were not found in the

previous user test. These features were the swipeable 1RM cards, the date picker,

and the ”set weight” feature. As in the test in the second iteration, a SUS survey

was conducted again, which can be seen in appendix E figure 62. This test scored

87.5 out of 100, scoring this version of our PWA 7.5 points above the last one,

placing it in the highest percentile being ”best imaginable”. The positive feedback

from the user, paired with the higher SUS score, means that this test successfully

fulfills all the criteria set.
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7 Findings

After detailing each iteration of the development process in the project, we have

gathered insights into the various challenges and successes as well as any neces-

sary adaptations needed to refine our solution. Through iterative refinement, we

have progressed towards a more robust and user-friendly prototype. The itera-

tive approach enabled us to incorporate a design-test loop, where we used various

testing methods over the entire project’s lifecycle, to identify and solve current

issues in our prototype. These findings serve as the bedrock on which we build our

understanding of the evolution of the project, and will be described in this section.

7.1 Device Hard- and Software

In the first iteration, we explored the MPU6050 accelerometer as a potential solu-

tion for distance tracking. However, we quickly realized that an accelerometer was

better at detecting orientation and acceleration rather than distance. We noticed

this since sudden movements caused the data, which we thought to be distance

data, to spike, and most of the time, it returned a constant number between -10

and 10 due to the force of gravity. We therefore started the second iteration by

switching to the ultrasonic sensor that could properly measure distance.

During the second iteration of the project, we quickly realized that iPhones do not

support the use of the NFC module on web applications but only with native ones.

To make sure all platforms are supported, we changed the way a user would access

a fitness machine to be via a QR code scanner instead. This change also proved to

be simple to implement, still allowing the user to connect to a fitness machine in a

simple manner through the application.

In our field tests, performed as the last thing in iteration two, we found that our

data calculations were not performing as expected regarding the phase tracking.

The first and last phases were incorrectly tracked from the moment that the user

pressed the start and stop buttons on the app, resulting in wrong data for the first

and last phases of each set. This could ultimately have impacted our intensity

calculation as well. To combat this we changed the code to handle these edge cases

correctly, resulting in correct data for the first and last phase of each set of the

exercise as shown in the last iterations field test.

7.2 Cloud Services

In the second iteration, we found that we unpurposedly had structured our database

table as a relational database, by having nested attributes for each item. This was

the wrong practice for our chosen database, led to issues when fetching data in

the frontend, and impacted the scalability and management of the database. This
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prompted us to refactor to a non-relational table structure in the second iteration.

While this refactor did make both the tables non-relational, our overall database

structure was still relational, since both tables had the same partition key, being a

userID, creating a relation between the two.

The way we set up our system architecture proved to be the correct way of achiev-

ing our goal. The only error with this architecture was the trigger for the VBT

calculation. Based on the results of the second field test in the second iteration, we

saw that this calculation was wrong. While the formulas used and the mathematics

behind the calculation proved to be correct through mock testing, the way the data

was parsed by the trigger was not. This resulted in incorrect intensity calculations,

and since this was used to calculate the 1RM as well, this value was also wrong.

7.3 User Feedback

Based on the user tests we conducted in the second and third iteration, we found

that our design for the application was user-friendly. The user feedback from both

of these tests yielded positive results and they both had a high SUS score as well.

There were however a few things that the user was confused about in the first

test, and therefore we did make some small changes to the application in the third

iteration. These changes led to the user having no confusion or questions in the

last user test on the application along with a higher SUS score on our application.
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8 Discussion

While certain elements of the project might have been approached differently with

a broader scope, it is essential to recognize that the project’s scope was defined by

the objective outlined in the project statement. The developed system is meant to

serve as a final prototype. In this section, we will explore potential enhancements

and expansions of the product, and reflect on our approach and the methods used

in development, based on our findings and future possibilities. We will also dis-

cuss some features that could contribute to a potential commercial scaling of the

prototype.

8.1 Our Way of Working

The project never progressed into the final implementation phase. Due to the scope

of the project, it was never a goal to reach this phase and create a fully-fledged solu-

tion, but rather to have a working prototype. Throughout the project, we employed

an Agile framework and worked with an iterative development approach. The Ag-

ile framework provided flexibility to quickly adapt to any requirement changes and

solve problems as they emerged. This was effective in making continuous improve-

ments. This framework was complemented by our iterative approach, where the

development was broken down into cycles, allowing for frequent reassessment and

refinement based on user feedback and testing. These strategies helped us combat

issues and challenges we came across, to help ensure that the system was oper-

ational and user-friendly. To get a deeper understanding of how the application

performs at a usability level, it would have been better to collect more empirical

evidence by testing it more thoroughly and on multiple subjects. Given more time,

we could have implemented more iterations, allowing us to test the product more

thoroughly, to help refine the prototype and come closer to a final solution. We

should also have been consistent with system testing through iteration three in-

stead of continuing isolated tests on each part of the system, to verify that they

worked together. Specifically for the second iteration’s field test, we identified is-

sues with the intensity calculation. Instead of testing the new calculation on its

own, we should have replicated the previously performed system tests that previ-

ously failed. This would have allowed us to identify the real issue faster, which was

not the calculation, but instead the setup of our cloud services and triggers. This

might have led us to solve this issue within the project’s timespan.

8.2 Our Architecture

By developing an IoT device and application, we necessitated a reliable and scalable

architecture, that was capable of real-time data processing and showing an analysis

of an average person’s performance. Since the velocity threshold values in the
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calculation are based on a group of novice fitness lifters, the analysis of one’s

workout is not necessarily accurate for everyone, and would ultimately only be so,

if the product calculated a personal velocity threshold for each user.

Other architectural decisions, such as the use of Raspberry Pi coupled with MQTT

for reliable data transmission, and the integration of serverless computing and data

storage with AWS Lambda and AWS DynamoDB, were important for minimizing

latency and enhancing the responsiveness of our system. These choices reflect

a deliberate focus on reliability and efficiency, which are both fundamental for

IoT applications to succeed in dynamic environments like sports performance and

fitness.

Despite this, the architecture of our cloud services also proved to be problematic

based on the finding from the second field test from the second iteration, which

tested the intensity calculation. Since we found from further mock testing that

the calculations were correct, it relied on the way that data were parsed into the

function. This meant that a set had to be parsed phase by phase, in chronological

order, for the intensity and 1RM to be calculated correctly. The database trigger

we used to run the lambda function containing the code, proved to parse the items

in an incorrect order, leading to incorrect calculations.

To reflect on the scope of the project, a Raspberry Pi was theoretically the wrong

choice of MC. An ESP32 would probably be able to handle the simple processing

we are doing on the MC and is both smaller and cheaper than the Raspberry Pi.

These factors would have made it cheaper for us to use and easier to install on a

machine in the gym.

In reflection, while our choices helped us progress in the right direction, they also

posed challenges in integration and initial setup, highlighting the importance of

flexibility and adaptability in managing complex IoT systems. Challenges like

incorrect data storage were quickly solved thanks to our choice of database, and

addressing the incorrect sensor was straightforward by switching to an ultrasonic

sensor. The Raspberry Pi’s adaptability allowed for easy integration of the new

sensor, simplifying adjustments in the device software layer. This examination not

only underscores the successes but also the learning opportunities presented by the

project.

8.3 Future Development

This section will discuss how and what we would develop and improve on the

product if we were to make further development. This is based on both technical

knowledge, the findings of our project as well as critical reflection.

45



In a commercial gym setting, scalability is a key consideration. Rather than re-

quiring a Raspberry Pi for each machine, a more efficient approach would be to

involve a central Raspberry Pi serving as a hub to manage multiple wireless sensors,

distributed across various machines. This setup would be a superior approach for

larger settings, as multiple sensors would send their data to a single hub, which

would handle all data aggregation, processing, and communication with the cloud.

Having multiple sensors sending data to a single Raspberry Pi, would also correctly

utilize its computational power.

To enhance the precision of the VBT calculation, the various machine’s velocity

thresholds should be changed. A simple fix would be to have the application

support a choice of whether the user is a novice, intermediate, or an experienced

lifter. Yet to achieve the most correct and precise threshold, the product would

have to create a personal velocity threshold for each machine based on a user’s

previous workouts.

An enhancement for the frontend could be the use of the WebSocket API. Unfor-

tunately, due to time constraints and the scope of our project, we were unable to

implement this feature. The WebSocket integration was intended to allow real-time

database updates to be pushed directly to the frontend which would eliminate the

need for the application to fetch data repeatedly. Reflecting on this aspect, it is

clear that while the WebSocket integration remains an unfulfilled component and

would have been beneficial, it is not critically necessary for our project’s scope

due to the amount of data involved. It would only be deemed relevant in a larger

setting.

The integration of WebSockets would be a major feature to implement in future

development. Implementing this would mean that the data fetching would only

occur during the initial page load, thus reducing server load and data retrieval

costs. The data fetched would then be cached, and future data would be sent to

the application via the WebSocket connection. Each new data point would be added

to the current cache and then the UI would immediately refresh. This leads to a

more dynamic user experience, as the application receives updates immediately.

For the database structure, the correct implementation would be to merge the two

tables into one. This is because, even though our tables are non-relational, the

fact that we have two tables with the same partition key creates a relation between

them. This would however make the current setup with the database trigger for

the velocity calculation impossible since it would create an infinite loop with itself

when updating the table. Therefore this computation trigger would need to be

changed to instead be a trigger on the MQTT data topic that the Raspberry Pi

is sending to. This would mean that the velocity calculation would be running on

each data point in real-time, and then insert the combined workout and VBT data
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in the table. By making this change, the incorrect intensity calculation would also

be fixed, providing a correct analysis of the user’s workout.

The biggest improvement possible for the sensor would be to both start and stop the

tracking automatically. If this were to be implemented the sensor would be running

continually, and then lock itself to a user when the QR code is scanned. It would

start computing phases when a certain threshold for either distance or velocity is

met, and then stop when the machine has not been moved for a certain amount of

time. This would be a big improvement for the user since they would only have to

scan a QR code and afterward leave the machine through the application.

An important factor that should be implemented if this product were to enter the

fitness industry, would be authentication. To accommodate the GDPR laws present

in Europe on data handling[25], if you were to implement authentication, you would

have to also implement security measures. This is extremely important since you

would have to handle users’ personal information. Doing this would complement

how the machine would be paired to a user and how the data for each user is stored.

If authentication through login were implemented in the application a unique user

identification would be present, which would then both be used as identification for

the machine when the QR code is scanned and the partition key for the database.
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9 Conclusion

How can IoT technologies be used to develop a product that integrates a device

with an application for pin-loaded fitness machines, offering analysis of a user’s

workout based on the principles of velocity based training in a user-friendly way?

The integration of an IoT device with a pin-loaded fitness machine, utilizing the

principles of VBT, has shown potential for providing an analysis of a user’s workout.

The project explored the feasibility of developing a system to collect, process, and

display data, enabling performance tracking and feedback on the fitness machine.

The result was a prototype that moved closer to a potential solution, offering users

an intuitive way to analyze their performance.

By utilizing a Raspberry Pi for data collection and computation with an ultrasonic

sensor for accurate measurements of exercise movements, the system tracked the

phases, and repetitions in a set. The data was then transmitted to AWS for pro-

cessing, utilizing AWS Lambda for real-time computation and AWS DynamoDB

for scalable data storage. This architecture enabled the handling of workout data,

providing users with feedback immediately after finishing a set on their exercise.

This feedback contained performance metrics, such as intensity, 1RM, and phase

timings.

Testing and iterative development played a bigger role in refining the system. Ini-

tial challenges, including inaccurate phase tracking and data handling issues, were

addressed through agile development practices, leading to improvements in data

accuracy and user experience. The positive feedback from users indicated that the

final prototype is user-friendly and intuitive, confirming the project’s success in

meeting its usability goals.

This thesis describes how a prototype could be a step towards a possible solution

by integrating an IoT technology stack with VBT principles to create a product

that offers an analysis of a user’s workout on a pin-loaded fitness machine. Overall,

the project demonstrates the feasibility and potential benefits of integrating IoT

technologies with fitness equipment.
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[14] Berat Dinçkan. ESP32 to AWS: Complete IoT Solution with IoT Core, Dy-

namoDB, and Lambda Functions in Golang. Jan. 2024. url: https://dev.

to/dinckan_berat/esp32-to-aws-complete-iot-solution-with-iot-

core- dynamodb- and- lambda- functions- in- golang- 5h2f (visited on

05/01/2024).

[15] 7 Reasons Why You Should Use Tailwind CSS Right Now. url: https://

www.material-tailwind.com/blog/7-reasons-why-you-should-use-

tailwind-css (visited on 01/05/2024).

[16] Actuators in IoT. url: https://www.geeksforgeeks.org/actuators-in-

iot/ (visited on 05/10/2024).

[17] JEAN-LUC AUFRANC. Know the Differences between Raspberry Pi, Ar-

duino, and ESP8266/ESP32. url: https://www.cnx-software.com/2020/

03/24/know-the-differences-between-raspberry-pi-arduino-and-

esp8266-esp32/ (visited on 04/20/2024).

[18] AWS DynamoDB. url: https://aws.amazon.com/dynamodb/ (visited on

04/15/2024).

[19] AWS Lambda. url: https://aws.amazon.com/lambda/ (visited on 04/15/2024).

[20] Benefits of progressive web apps. url: https://www.divante.com/reports/

pwabook/benefits-of-progressive-web-apps (visited on 01/05/2024).

[21] Richard Bevis. 7 Examples of IoT in Everyday Life. url: https://www.

cbtnuggets.com/blog/technology/networking/seven- examples- of-

iot-in-everyday-life (visited on 04/20/2024).

[22] Alana Chinn. What’s the System Usability Scale (SUS) & How Can You

Use It? url: https://blog.hubspot.com/service/system-usability-

scale-sus (visited on 05/08/2024).

[23] Nefe Emadamerho-Atori. Introducing Shadcn UI: A reusable UI component

collection. url: https://blog.logrocket.com/shadcn-ui-reusable-ui-

component-collection/ (visited on 02/05/2024).

[24] Estimate your one rep max with bar speed tracking data. url: https://

www.vbtcoach.com/blog/1rm-and-velocity-based-training-vbt-a-

complete-guide (visited on 04/20/2024).

50



[25] General Data Protection Regulation. url: https://gdpr-info.eu/ (visited

on 05/08/2024).

[26] GymAware Homepage. url: https://gymaware.com/ (visited on 04/15/2024).

[27] Daniel Hindi. What is Field Testing? Explained With Examples. url: https:

//buildfire.com/how- to- perform- user- testing- for- your- app/

(visited on 05/01/2024).

[28] How To Use The System Usability Scale (SUS) To Evaluate The Usability

Of Your Website. url: https://usabilitygeek.com/how-to-use-the-

system-usability-scale-sus-to-evaluate-the-usability-of-your-

website/ (visited on 05/06/2024).

[29] IoT database. url: https://www.scylladb.com/glossary/iot-database/

(visited on 05/01/2024).

[30] Anni Junnila. How IoT works - Part 3: data processing. url: https://

trackinno.com/iot/how-iot-works-part-3-data-processing/ (visited

on 05/01/2024).

[31] Keep It Simple, Stupid (KISS). url: https://www.interaction-design.

org/literature/topics/keep-it-simple-stupid (visited on 04/28/2024).

[32] MQTT: The Standard for IoT Messaging. url: https://mqtt.org (visited

on 04/24/2024).

[33] Tharaka Romesh. Why Choose Next.js - Top 5 Performance Benefits. url:

https://cult.honeypot.io/reads/top-nextjs-performance-benefits/

(visited on 01/05/2024).

[34] RPE in powerlifting: wha is RPE? + how to use rating of perceived exer-

tion optimally. url: https://www.progressiverehabandstrength.com/

articles/rpe-in-powerlifting-what-is-rpe (visited on 04/20/2024).

[35] Software testing - mock testing. url: https://www.geeksforgeeks.org/

software-testing-mock-testing/ (visited on 05/01/2024).

[36] The 5 Layers of the IoT Technology Stack. url: https://danielelizalde.

com/iot-primer/ (visited on 04/30/2024).

[37] US Contactless Payment Statistics. url: https://finicalholdings.com/

us-contactless-payment-statistics/ (visited on 04/19/2024).

[38] Use Cases. url: https://mqtt.org/use-cases/ (visited on 04/24/2024).

[39] VELOCITY BASED TRAINING – THE FUTURE OF STRENGTH TRAIN-

ING. url: https://www.flexstronger.com/velocity-based-training/

(visited on 04/15/2024).

[40] Vercel Landingpage. url: https://vercel.com/ (visited on 05/10/2024).

51



[41] What is NoSQL? url: https : / / aws . amazon . com / nosql/ (visited on

04/18/2024).

[42] What is SIGFOX. url: https://www.electronics-notes.com/articles/

connectivity/sigfox/what-is-sigfox-basics-m2m-iot.php (visited on

05/01/2024).

[43] What is SQL? url: https://aws.amazon.com/what-is/sql/ (visited on

04/18/2024).

[44] What is the IoT? url: https://www.ibm.com/topics/internet- of-

things (visited on 04/15/2024).

[45] What’s the Difference Between MySQL and PostgreSQL? url: https://

aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql/

(visited on 04/18/2024).

[46] Which MicroController is suitable for the Internet of Things? url: https:

//www.tutorialspoint.com/which-microcontroller-is-suitable-for-

the-internet-of-things-iot (visited on 05/01/2024).

52



53



Appendices

A Mock Testing

1 {

2 "Records ": [

3 {

4 "eventID ": "c4ca4238a0b923820dcc509a6f75849b",

5 "eventName ": "INSERT",

6 "eventVersion ": "1.1" ,

7 "eventSource ": "aws:dynamodb",

8 "awsRegion ": "us -east -1",

9 "dynamodb ": {

10 "Keys": {

11 "Id": {

12 "N": "101"

13 }

14 },

15 "NewImage ": {

16 "USER#<UUID >": {

17 "S": "USER #001"

18 },

19 "MACHINE#<MachineID ># SESSION#<SessionDate >#SET#<SetNumber >#

REP#<RepNumber ># PHASE#<Phase >": {

20 "S": "MACHINE#machine1#SESSION #09/04/2024# SET#0#REP#1#

PHASE#Concentric"

21 },

22 "Load": {

23 "N": "0"

24 },

25 "Distance ": {

26 "N": "5.0"

27 },

28 "MachineId ": {

29 "S": "Machine1"

30 },

31 "Phase ": {

32 "S": "Concentric"

33 },

34 "Rep": {

35 "N": "1"

36 },

37 "PhaseTime ": {

38 "N": "1"

39 },

40 "SessionDate ": {

41 "S": "09/04/2024"

42 },

43 "Set": {

44 "N": "1"

45 }

46 },

Figure 23: Mock data for our VBT computation tests 1/3.

54



1 "ApproximateCreationDateTime ": 1428537600 ,

2 "SequenceNumber ": "4421584500000000017450439091" ,

3 "SizeBytes ": 26,

4 "StreamViewType ": "NEW_AND_OLD_IMAGES"

5 },

6 "eventSourceARN ": "arn:aws:dynamodb:us -east -1:123456789012:

table/ExampleTableWithStream/stream /2015 -06 -27 T00 :48:05.899"

7 },

8 {

9 "eventID ": "c81e728d9d4c2f636f067f89cc14862c",

10 "eventName ": "REMOVE",

11 "eventVersion ": "1.1" ,

12 "eventSource ": "aws:dynamodb",

13 "awsRegion ": "us -east -1",

14 "dynamodb ": {

15 "Keys": {

16 "Id": {

17 "N": "101"

18 }

19 },

20 "NewImage ": {

21 "Message ": {

22 "S": "This item has changed"

23 },

24 "Id": {

25 "N": "101"

26 }

27 },

28 "OldImage ": {

29 "Message ": {

30 "S": "New item!"

31 },

32 "Id": {

33 "N": "101"

34 }

35 },

Figure 24: Mock data for our VBT computation tests 2/3.
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1

2 "ApproximateCreationDateTime ": 1428537600 ,

3 "SequenceNumber ": "4421584500000000017450439092" ,

4 "SizeBytes ": 59,

5 "StreamViewType ": "NEW_AND_OLD_IMAGES"

6 },

7 "eventSourceARN ": "arn:aws:dynamodb:us -east -1:123456789012:

table/ExampleTableWithStream/stream /2015 -06 -27 T00 :48:05.899"

8 },

9 {

10 "eventID ": "eccbc87e4b5ce2fe28308fd9f2a7baf3",

11 "eventName ": "REMOVE",

12 "eventVersion ": "1.1" ,

13 "eventSource ": "aws:dynamodb",

14 "awsRegion ": "us -east -1",

15 "dynamodb ": {

16 "Keys": {

17 "Id": {

18 "N": "101"

19 }

20 },

21 "OldImage ": {

22 "Message ": {

23 "S": "This item has changed"

24 },

25 "Id": {

26 "N": "101"

27 }

28 },

29 "ApproximateCreationDateTime ": 1428537600 ,

30 "SequenceNumber ": "4421584500000000017450439093" ,

31 "SizeBytes ": 38,

32 "StreamViewType ": "NEW_AND_OLD_IMAGES"

33 },

34 "eventSourceARN ": "arn:aws:dynamodb:us -east -1:123456789012:

table/ExampleTableWithStream/stream /2015 -06 -27 T00 :48:05.899"

35 }

36 ]

37 }

Figure 25: Mock data for our VBT computation tests 3/3.
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B Field Testing

B.1 Iteration 2

Figure 26: Starting the

workout.

Figure 27: Scanning the

machine.

Figure 28: Performing

the exercise.

Figure 29: Stopping the

workout.

Figure 30: Showing the

history page with the ex-

ercise performed.

Figure 31: Showing the

data for each repetition

of the performed set.
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B.2 Iteration 3

Figure 32: Starting the workout. Figure 33: Scanning the ma-

chine.

Figure 34: Performing the exer-

cise.

Figure 35: Stopping the workout.
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Figure 36: Showing the history

page with the exercise performed.

Figure 37: Adding the amount of

weight lifted.

Figure 38: Showing the data for

each repetition of the performed

set.

Figure 39: Showing the statistics

page.
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C Wireframe Images

Figure 40: Main page. Figure 41: QR scanner

page.

Figure 42: Start exercise

page.

Figure 43: Active exer-

cise page.

Figure 44: Exercise re-

sults page.

Figure 45: Specific ma-

chine for one rep max

statistic page.
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Figure 46: History page. Figure 47: Specific ma-

chine history page.

Figure 48: Choose the

specific exercise for one

rep max page.
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D Final Application

Figure 49: Main page

- Workout page.

Figure 50: QR code

scanner - Workout

page.

Figure 51: Start work-

out - Workout page.

Figure 52: Count-

down to begin the set

- Workout page.

Figure 53: Stop work-

out - Workout page.
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Figure 54: Set details -

History page.

Figure 55: Workout de-

tails for one exercise -

History page.

Figure 56: Multiple ex-

ercises - History page.

Figure 57: Date picker

and calendar - History

page.

Figure 58: Various

statistics - Statistics

page.
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E User Testing

Jeg g̊ar ind p̊a appen nu, og er i start tab der hedder workout hvor der

st̊ar “start your workout” og jeg kan scanne en QR kode som jeg kunne

forestille mig er til en vægt eller en maskine.

Jeg bevæger mig over i statistics tab hvor jeg kan se nogen tal, der st̊ar

average intensity og s̊a et tal som jeg ikke helt ved hvad betyder. Den

m̊aler en værdi som jeg ikke helt ved hvad er?

Jeg kan se der er en total workout som giver sig selv med et kalender

tegn, der formoder jeg at man kan se hvor ofte man har trænet og hvilke

dage man har trænet og hvor mange gange og s̊adan noget.

S̊a st̊ar der “chest press machine” 1RM, ogs̊a st̊ar der kilo, RM ved jeg

ikke helt hvad der betyder.. hov det st̊ar dernede “*læser op fra info

tab”* S̊a det st̊ar hernede hvis man er i tvivl kan jeg se.

S̊a er der training history hvor jeg kan se dagens dato, s̊a st̊ar der

machine1 som jeg kunne forestille mig er en af de maskiner man har

scannet med QR koden. Hvis jeg åbner den st̊ar der hvor mange reps jeg

har lavet og hvor lang tid jeg har brugt pr set. Ogs̊a vægten som man

har løftet, ogs̊a et andet set her nedenunder med nogen andre værdier

som m̊a være et andet set.

Figure 59: User test - application 1.

64



Figure 60: SUS user test 1.
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Jeg g̊ar ind p̊a workout appen, og er p̊a en start side. Der st̊ar “start

your workout” som jeg gerne vil s̊a jeg trykker p̊a scan QR code. S̊a

bliver jeg bedt om at scanne en QR kode som jeg s̊a gør p̊a en den

maskine jeg er p̊a kunne jeg forestille mig. Efter det s̊a ser jeg en start

knap s̊a jeg g̊ar ud fra jeg kan starte træningen her.

Jeg g̊ar nu over i statistiks siden hvor jeg kan se der st̊ar chest press

one rep max som er p̊a 85kg. Jeg kan se der er nogen pile i siderne

s̊a jeg prøvet at swipe, det virkede nu kan jeg istedet for chest press se

seated row med en 1RM p̊a 70kg. Jeg kan ogs̊a se en blok hvor der st̊ar

average intensitet som er p̊a 90%, s̊a jeg forestiller mig det er for alle de

workouts jeg har lavet som jeg kan se ved siden af hvor der st̊ar total

workouts hvilket er 3 workouts i alt s̊a det giver jo meget god mening.

I den sidste side som hedder workout history kan jeg se jeg ikke har

trænet idag da der er tomt. men jeg kan til gengæld klikke p̊a datoen

ogs̊a er der nogle bl̊a streger under nogen af datoerne s̊a jeg g̊ar ud fra

det er de dage jeg har trænet. Der er en bl̊a streg under 3 maj s̊a jeg

prøver at trykke p̊a den. Der st̊ar s̊a jeg har lavet chest press og hvis

jeg folder menuen ud kan jeg se jeg lavede 1 set p̊a 3 reps som tog 10

sekunder med 80kg vægt, jeg lavede ogs̊a 1 set p̊a 3 reps p̊a 12 sekunder

hvor der er ikke er en vægt sat der er bare et spørgsm̊alstegn som er

understreget s̊a jeg prøver lige at trykke p̊a den. Der kommer s̊a en pop

up som spørger mig om at indtaste en vægt s̊a jeg skriver bare 50kg og

trykker videre ogs̊a opdaterer den p̊a den anden side ogs̊a.

Figure 61: User test - application 2.
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Figure 62: SUS user test 2.
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